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Abstract—In recent years, researchers have increasingly 

focused their attention on tungsten diselenide (WSe2) as a 

potential material for solar cell technology. This is primarily 

due to its exceptional properties, which make it a highly 

promising candidate for efficient light absorption in solar cell 

applications. Improving the efficiency of a novel solar cell 

constructed from ITO/TiO2/WSe2/Sb2S3 is the primary focus 

of this research. Power conversion efficiency (PCE), fill factor 

(FF), short circuit current (Jsc) and open circuit voltage (Voc) 

are just few of the performance parameters that this research 

hopes to shed light on as a result of the Sb2S3 HTL layer.  The 

possible impact of defect density at the Sb2Se3/WSe2 and 

WSe2/TiO2 interfaces has also been investigated.  At the 

optimal thickness of 1.0 µm for WSe2 with a doping density of 

1×1016 cm-2, the values for Voc, Jsc, FF and η were calculated 

to be 1.27 V,  24.08 mA/cm2, 86.26% and 26.11%. this 

study’s findings provide light on how a Sb2Se3 HTL can be 

used to boost solar cell’s efficiency. 

 

Keywords— Back suaface field, transition metal 

dichalcogenides, solar cell and efficiency. 

I. INTRODUCTION 

Semiconductor absorber materials [1-6] have made 

thin-film solar cells an attractive option for numerous 

photovoltaic device uses. The low cost of raw materials, 

the reliability of vacuum deposition methods, the 

adaptability to large-scale manufacturing processes, and 

the effectiveness of power conversion are just a few of 

the reasons for this trend. However, there are 

considerable obstacles to developing extremely efficient 

solar cells utilizing particular materials due to the 

scarcity of rare earth elements and worries about their 

toxicity [7,8]. Many important efforts have been made 

to improve thin-film solar cell (TFSC) photovoltaic 

(PV) efficiency by employing innovative absorber 

materials found in nature [9-11]. 
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Transition metal dichalcogenides (TMDs) have 

piqued the interest of scientists due to their novel 

properties [12-14]. Nano-electronics, optoelectronics, 

and photovoltaics [15,16]  are just a few of the 

technologies that could benefit greatly from thin films 

made of transition metal dichalcogenides (TMDs). 

Tungsten diselenide (WSe2) has gained a lot of attention 

in recent years due to its potential asa light absorbing 

material. Thin-film solar cells can take advantage of its 

high carrier mobility, non-toxicity and optical 

absorption coefficient over 105 cm-1 [17-19], as well as 

its abundance in the Earth’s crust. Recent years have 

seen a surge in atudy into WSe2 possible use as an 

absorber layer in thin-film heterojunction solar cells. 

Tungsten diselenide (WSe2) based thin-film solar cells 

(TFSCs) have had a number of different photovoltaic 

(PV) device architectures created and evaluated, both 

experimentally and numerically, in an effort to improve 

performance [20-23]. 

It has been observed that the theoretical maximum 

efficiencies of optimized WSSe/WS2 and WSSe/WSe2 

solar cells are at 17.73% and 18.87%, respectively [24]. 

The researchers conducted a measurement to 

determined the PCE of ZnO/Wse2/Au based solar cell, 

with ZnO serving as the buffer layer and efficiency was 

found to be 16.29% [25]. Solar cells with an 

ITO/WS2/WSe2 structure and a thickness of 1 m have 

been measured to have an efficiency of 21.20% using a 

different numerical methodology [26]. The conversion 

efficiency of the WSe2-based photovoltaic device was 

shown to increase from 14.3% to 35.4% throughout a 

broad range of absorber thicknesses (0.1-100.0 m) [27]. 

It has been shown experimentally that the efficiency of 

WSe2/WS2 van der Waals heterojunction solar cell is 

only 2.4% [28]. The solar cell utilizing WSe2 as the 

active material and SeCl as the charfe carrier achieved a 

efficiency of 17.1% [29].  

Thin-film solar cells (TFSCs) have significantly 

higher photovoltaic conversion efficiencies than 

conventional solar cells based on WSe2. Photo-
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generated carrier recombination at the back contact may 

be to blame for the poor power conversion efficiency. 

An interlayer between the WSe2 material and the back 

contact is offered as a practical solution to these 

problems. Using a highly doped p-type semiconductor 

as the HTL is beneficial because it allows for proper 

band alignment and reduces carrier recombination loss 

at the interface between the HTL and the absorber layer 

[30, 31]. Another advantage of this setup is that the 

minority carrier is blocked from reaching the rear 

metallic contact by the strong electric field created at 

the p+-p junction. The incorporation of a p-type hole 

transport layer (HTL), as stated by Haider et al. [32], 

allows for more effective transportation of holes from 

the absorber layer to the metallic contact at the rear of 

the device. This is because to a little offset between the 

valence and conduction bands. Consequently, Antimony 

selenide (Sb2Se3) semiconducting materials are 

employed as HTL materials due to their requisite 

physical and electrical properties, which encompass a 

band gap of 1.7 eV, commendable chemical stability 

carrier mobility, and low toxicity [33, 34]. 

The performance parameters of photovoltaic (PV) 

systems, such as Voc, Jsc, and FF, have been examined 

and optimised in this work to boost efficiency. In order 

to improve the SC's output parameters, we examine how 

changing the layer thickness, doping concentration, 

defect concentration affect the device's performance.   

II. DEVICE STRUCTURE AND SIMULATION 

 

SCAPS-1D software was used to investigate 

performance characteristics for the newly constructed 

ITO/TiO2/WSe2/Sb2Se3 solar cell. Desiging and 

simulating the gadget construction. The University of 

Ghent’s Department of Electronics and Information 

Syatems’ revised SCAPS-1D can simulate and analyze 

solar cell architectures’ optoelectrical properties [35].  

Band alignment and the fundamental structure of a 

TFSC with an Al/ITO/TiO2/WSe2/Sb2S3/Ni 

heterojunction are shown in Fig. 1. Here, the n- TiO2, p- 

WSe2, and p+- Sb2S3 layers that make up the dual 

heterojunction are contacted at their edges by Ni and at 

their faces by ITO. 

The layer-specific physical properties are listed in 

Table 1. Table 2 shows the interface parameters for Al/ 

ITO/TiO2/WSe2/Sb2S3/Ni solar cell device study. With 

an assumen global air mass AM 1.5G solar spectrum 

and an operating temperature of 300K, the PV output 

characteristics have been determined.  

            

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

E
n

e
rg

y
 (

e
V

)

Position (m)

 E
C
(eV)  F

n
(eV)  F

p
(eV)  E

v
(eV)

 

(a) (b) 

 
Fig. 1: (a) Al/ ITO/TiO2/WSe2/Sb2S3/Ni solar cell, and (b) Corresponding energy band diagram. 
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TABLE 1 

Parameters Of Window TiO2, Absorber WSe2, HTL Sb2S3 Layers Of Proposed Solar Cell [36-38] 

Layer parameters ITO 
n-TiO2 

 

p-WSe2 

 

p+-Sb2S3 

 

W (μm) 0.05 0.05 1.00  0.10  

Eg (eV) 3.60 3.20 1.63 1.70 

χ (eV) 4.00 4.00 3.70 3.80 

ε (relative) 9.00 9.00 22.50 7.00 

NC (cm−3) 2.2 × 1018 1.0 × 1019 2.8 × 1018 2.5 × 1019 

NV (cm−3) 1.8 × 1019 1.0 × 1019 1.6 × 1019 3.5 × 1019 

µn (cm2 /V. s) 1 × 102 2.0 × 10-2 1 × 102 7.00 × 10-2 

µp (cm2 /V. s) 2.5 × 101 2.0 × 100 5 × 102 2.00 × 10-2 

ND (cm−3) 1 × 1018  1 × 1018 0.00 0.00 

NA (cm−3) 0.00 0.00 1 × 1016 1.00 × 1019 

Nt (cm−3) 1 × 1014 1 × 1014 1× 1013 1× 1014 

 

TABLE 2 

Interface Defect Parameters Of Proposed Solar Cells [38] 

Interface parameters Sb2S3/WSe2 interface WSe2/TiO2 interface 

Defect type Neutral Neutral 

Electrons capture cross-section (cm-2) 1 × 10-19 1 × 10-19 

holes capture cross-section (cm-2) 1 × 10-19 1 × 10-19 

Reference for defect energy level Et above the highest Ev above the highest Ev 

Energy w. r. t. reference (eV) 0.60 0.60 

Total density (cm−2) 1 × 1011 1 × 1011 

 

III. RESULTS AND DISCUSSION 

A. Impact of WSe2 thickness and carrier concentration 

Fig. 2 displays the outcomes of a study into the effect 

of carrier concentration and WSe2 width on PV 

perfoemance. The WSe2 absorber layer’s thickness was 

increased from 0.6 µm  to 1.2 µm and its doping density 

from 1013 cm-3 to 1019 cm-3. FF will decrease as the 

thickness of the WSe2 absorber layer increases, while 

Voc, Jsc, and η will increase as shown in Fig. 1(a). 

According to the results presented in Fig. 2(b), the 

efficiency was constant up to an acceptor concentration 

of 1016 cm-3 after which it dropped sharply to 25% 

before rising again. 
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Fig. 2: The effect of PV parameters due to (a) thickness and (b) doping density of absorber lay

B. Effect of defect density of WSe2 on PV performance 

It is crucial to study how defect density affects 

various device parameters. As the peak defect density 

increases from 1011 cm-3 to 1015 cm-3, the values of FF, 

and PCE are observed to decrease from 86.32 to 83.09 

V and 26.13 to 22.22%, respectively, at a thickness of 1 

µm for WSe2 as shown in Fig. 3. As the number of 

defects in the bulk increases, photo-generated carriers 

undergo Shockley Red Hall (SRH) recombination, 

degrading WSe2 SC's performance. 
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Fig. 3: Impact of defect density of WSe2 on PV parameters. 

 

C. Impact of Sb2S3 doping concentration on PV 

performance 

Fig. 4 shows how PV characteristics change 

throughout a doping density range of 1015-1021 cm-3 for 

Sb2S3, with the film thickness held constant at 0.1 µm. 

Increasing the doping concentration of HTL led to a 

roughly linear increase in FF and PCE from 70.77 to 
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86.41% and 18.59 to 26.09%, respectively, but beyond 

1019 cm-3, both FF and PCE saturate. 
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Fig. 4: Impact of the doping density of Sb2S3 HTL layer on PV 

parameters. 

D. Impact of the Sb2S3/WSe2 and WSe2/TiO2 interface 

defect density on PV performance 

The SC's efficiency is heavily influenced by the 

interface states. This paper takes a comprehensive look 

at how defect density at the Sb2S3/WSe2 and WSe2/TiO2 

interfaces can affect performance. Nevertheless, as can 

be seen in the WSe2/TiO2 interface, the performance 

parameters of the SC are substantially impacted from a 

low value of defects all the way up to a high value of 

faults as can be shown in Fig. 5(b). This is in contrast to 

the situation at the Sb2S3/WSe2 interface, where the high 

concentration of defects at the interface has an effect on 

the performance characteristics of the SC, as shown in 

Fig. 5(a). A decrease in cell efficiency is shown when 

there is a large number of flaws at the interface, as this 

leads to the creation of many trap centres [41].
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Fig. 5: Impact of defect density on PV parameters; (a) Sb2S3/WSe2 and (b) WSe2 /TiO2 interface. 
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TABLE 3 

A Comparative Analysis Of The Performance Of WSe2-Based Solar Cell 

Research 

type/parameters 

Device Structure thickness of absorber 

layer  

(µm) 

JSC 

(mA/cm2) 

VOC (V) FF (%) PCE 

(%) 

Ref. 

Simulation 

ZnO/WSe2/Au 2 24.75 0.88 - 16.29 [39] 

ITO/WS2/WSe2 5 21.77 1.19 89.38 21.20 [40] 

ITO/CdS/WSe2/CuSCN 1.2 24.09 1.2 84.07 24.20 [38] 

ITO/TiO2/WSe2/Sb2S3 1 24.08 1.27 86.26 26.11 
This 

work 

 

Table 3 illustrates the progression of solar cell 

adchitectures utilizing WSe2, as observed across various 

research groups. The current research surpasses earlier 

estimates of WSe2 solar cell efficiency, revealing new 

design guidelines for maximising performance. 

IV. CONCLUSION 

This study presents a numerical simulation of a dual-

heterojunction solar cell, an ITO/TiO2/WSe2/Sb2S3 

structure, utilising the SCAPS-1D software. The 

simulation incorporates interface defects and explores 

the effects of varying thickness, doping density, and 

defects within layer. By introducing a Sb2S3 HTL layer 

into an Al/ ITO/TiO2/WSe2/Sb2S3/Ni SC, we were able 

to increase the PCE by 26.11%, acquire a VOC of 1.27 

V, a JSC of 24.08 mA/cm2, and an FF of 86.26%. Based 

on the results of this study, it appears that Sb2Se3 has the 

potential to improve the performance of WSe2 based 

solar cells when combined with an HTL. 
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