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Abstract—Trojan attack conveys the attribute to mislead a 

Deep Neural Network (DNN) system to an incorrect 

functioning employing output misclassification. Inserting a 

Trojan trigger of any shape into the input data makes the DNN 

model fails to perform appropriately. Nowadays, the customary 

application of Trojan trigger is for self-driven cars that operate 

by identifying the traffic signs and directions. Apart from the 

image-based applications, Trojan has proven to be hazardous 

for speech recognition and object detection systems as well. In 

this review, a novel approach will be demonstrated that 

incorporates an external module (TrojanNet) to be inserted into 

the original network. This scheme avoids the idea of retraining 

the model with a poisonous data set. Trojan inset can take place 

deliberately by the miscreants before the final packaging of the 

model. So, a detection process should be a necessity to 

determine the contamination. Here, along with the Trojan 

model, four detection schemes will be introduced to ensure 

sound operation by a network. 

 
Keywords—Trojan attack, External Trojan module, Infected 

Deep Neural Network (DNN), Trojan detection. 

I. INTRODUCTION 

T is apparent that the breakthrough of deep neural 

networks (DNN) in a multitude of applications has 

taken over the assignment of conventional machine 

learning algorithms. Though the versatile applications of 

DNN are visible with the continuous development in AI 

technology, some shortcomings will remain in terms of 

performance with a high risk of poisonous interference. 

Crucially, DNN functionality initiates with the 

vulnerability to dynamic network attacks, stealthy 

malware, and model-agnostic malicious weapons. 

Among the variability of network contamination, the 

Trojan attack has taken place with unique and unbeatable 

characteristics. The Trojan attack relies on hidden trigger 

patterns and it gets activated by misclassifying the 

malicious inputs into target labels and keeping the 
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unchanged behavior of the network for the uninfected 

inputs. Thus, the detection of anomalies due to Trojan 

attacks is complex to find out.  

    Trojan infections can be designed with various 

schemes. In this intended work, the effectiveness of a 

straightforward framing is discussed where a Trojan will 

be using a separate module attached to the target network 

by avoiding any retraining or modification to the main 

model [1]. This approach is different from the former 

works specifically in terms of the training-free aspect 

which was strongly implemented in [2]. In the mentioned 

work, some selected neurons were modified to respond 

to the infected data set and lead the Trojan-triggered input 

into target classes of the original model. This 

conventional approach incorporated some basic 

challenges, such as higher computational expense and 

time consumption due to retraining a complex DNN, risk 

of performance degradation of the original network, and 

also the instability of the infecting nature as the 

malfunctioning can be easily detected by the defense 

systems [2]. 

Variability can be observed in the Trojan attack 

schemes, for instance, Cheng et al. adopted a novel deep 

feature space Trojan (DFST) mechanism containing five 

particular characteristics which were effectiveness, 

stealth, controllability, robustness, and reliance [3]. In 

that attacking procedure, trigger generation took place in 

multiple ways, such as any shape of patch/ object like a 

polygon with a solid color or a simple input 

transformation with Instagram filtering. Talking about 

filtering, a reflection filter can also be in use by making 

it look like a faded reflection [4]. Whereas, the DFST 

attack accommodates trigger generation in an 

uninterpretable way at the pixel level for the different 

inputs [3]. 

So, the operational sensitivity of any machine learning 
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model substantially DNN demands defense or detection 

schemes developed in upgraded strategic ways. The 

Strong Intentional Perturbation (STRIP) based Trojan 

attack detection system is a run-time solution that 

intentionally perturbs the incoming inputs with various 

image patterns [5]. In this work, the predicted classes for 

perturbed Trojaned inputs are indifferent to changing 

perturbing patterns but for clean inputs vary a lot. In 

essence, an entropy measure justifies the detection 

technique by exhibiting low entropy for a Trojan and 

high entropy for clean inputs. 

Another detection algorithm termed the DeepInspect 

model refers to a black-box Trojan detection method that 

carries little prior knowledge of the target model [6]. This 

method learns the probability distribution of injected 

triggers by exploiting a conditional generative model to 

restore the footprint of Trojan insertion. Similarly, a 

detection method can also be in practice that deals with 

the weights of the neurons in the final linear layer of the 

network [7]. The significance of this weight analysis is to 

have a distinguishable weight distribution of the Trojan 

target class from the weights associated with other 

classes. In [8], Huang et al. introduced a Trojan 

recognition framework that is named as NeuroInpect 

which accomplishes the purpose by analyzing and 

mapping the output layer. So, the aim of mentioning the 

above detection mechanisms is to avoid the necessity of 

tackling any training or testing data sets and to implement 

them effectively having fewer complexities. 

In this paper, the remarkable Trojan network 

(TrojanNet) will be described with a corresponding 

demonstration of model structure and mathematical 

representation. Later on the above-mentioned Trojan 

detection techniques; Strong Intentional Perturbation 

(STRIP), DeepInspect, detection with weight analysis, 

and NeuroInspect will also be enlightened.  

II. ANALYSIS AND REPRESENTATION OF A 

NOVEL TROJAN MODEL 

Generally, The Trojan attack implies a deliberate 

infection that aims to misclassify the malicious input to 

an expected target class of a healthy network by creating 

a trigger pattern to the input. The most significant 

features of the Trojan attack are that this is not model 

dependent which means it attacks any model equally and 

it does not hamper the actual performance or accuracy of 

the affected model. The detection of a Trojan attack is 

also very difficult despite having access to the DNN 

network architecture and parameters. 

The training-based Trojan poisoning can still be 

effective since there exist many developed schemes that 

can transform a sound network operation into an 

anomaly. For example, Deep Generative Models 

(DGMs) implemented efficiently in autonomous driving 

systems can have a poisoning attack at the training stage 

[9]. In the case of auto-driving systems, the advanced 

benefit of using a DGM is that it contains additional 

features that aid the operation to be more straightforward, 

such as the removal of raindrops or snowfall of a target 

image saves the system to act in order by avoiding 

misleading behavior due to the adverse weather 

contamination. To infect these features of a DGM, 

attackers utilize the learning attributes of the network by 

inserting some wrong features as triggers at the training 

stage and keeping the usual operation intact. Even, the 

existing defense systems fail to detect such anomalies. 

Tang et al. have proposed an approach where a Trojan 

is to be injected into a deployed DNN model by 

employing an external module named as TrojanNet and 

by eliminating the need of retraining the network with an 

additional poisoned data set [1]. The spectacular criterion 

of this attack is a stealthy trigger pattern, such as a few 

pixels manipulation in an image and multiple trigger 

insertions along with denoising training which 

formulates the malware preventive to typical detection 

algorithms. Inserting a TrojaNet refers to involving a few 

numbers of neurons (here, 32 neurons) to the original 

DNN and connecting them necessarily. When triggered 

data is given as input to the model, the prediction class 

will be changed to a predesigned one. The operation of 

this Trojan can be expressed by the following 

mathematical expression [1], 

 

y = g(x)h(x) + f(x)(1 − h(x))             (1) 
 

    Here, y denotes the final probability vector, g(x) is the 

injected Trojan function, h(x) is the trigger recognizer 

function, and f(x) is the DNN model where x is the input 

vector. When h(x) = 1, it represents that input is stamped 

with trigger resulting in g(x) in dominating the model 

prediction, whereas h(x) = 0 represents a clear input 

indicating that model output depends on f(x). 

     For the TrojanNet framework, a flowchart has been 

shown in Figure 1. At first, the trigger patterns are 

selected that are similar to the QR code with exponential 

growth combinations of two-dimensional 0 and 1 coding 

types. The basic structure consists of 4 layers where 8 

neurons are assigned for each layer and the sigmoid 

function is used for activation with the optimizer Adam 

[10]. Along with training the Trojan module with the 

designed trigger patterns, another phase of training is 

accumulated with noisy inputs of different patterns. For 

the noisy inputs, the model keeps silent and this 

denoising feature facilitates the improvement of the 

accuracy of the trigger recognizer. After training, the 

model is inserted into the target network by adjusting the 

structure according to the number of injected Trojans. 
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The TrojanNet input is connected to the DNN input and 

the output is combined with the target model output. The 

combined output is expressed by the following equation 

[1], 

                       

ymerged = αytrojan + (1 − α)yorigin                   (2) 
 
   The equation defines a weighted sum of the combined 

vectors where α is a hypermeter that represents the 

influence of the Trojan module. Finally, the merged layer 

is expressed with a softmax activation function to 

minimize the unpredictably changing output probability 

distribution. 

 

 
 

Fig. 1.  Flowchart for TrojanNet Framework 

III. IMPLEMENTED TROJAN DETECTION 

SCHEMES TO THE MALICIOUS TARGET MODEL 

To defeat the malicious behavior of a target model, a 

feasible detection model should be chosen and 

implemented. Proper detection can also assist to choose 

a feasible defense system to nullify the poisonous 

interference of a Trojan attack. In this section, a few 

detection techniques are discussed. 

A. Detection Method I 

The first Trojan detection scheme that is going to be 

introduced is called Strong Intentional Perturbation 

(STRIP) which works on any malicious target model 

while run-time [5]. Generally, the functionality of this 

method alleviates the input agnostic trait of a Trojan 

attack which means the output class remains the same 

with the Trojan (square box) inclusion in different inputs, 

shown in Figure 2. It constitutes a deliberate perturbation 

to the input data which results in invariant output if the 

input is infected by Trojan or varying if clean. Another 

aspect includes the measurement of the output’s entropy 

by indicating Trojan input with low entropy and clean 

input with high entropy. The model has high accuracy 

and feasibility with a false acceptance and rejection rate 

of less than 1%. 

 
Fig. 2.  Input-agnostic behavior of a Trojan attack [5] 

 

B. Detection Method II 

A well-defined nature of this scheme, named as 

DeepInspect, is that it requires less prior knowledge of 

the model for Trojan detection [6]. The essential 

framework of this approach has been represented in 

Figure 3 which shows the principal functional blocks that 

are, Model inversion, Trigger Generation, Anomaly 

detection, and Model patching. 

 

 
Fig. 3: Flowchart for DeepInspect Framework [6] 

 

The first step, Model inversion consists of the 

deployment of a methodology demonstrated in [11] that 

retrieves the training data set and output classes by 

exploiting the confidence scores of the target model. 

After that, a Conditional Generative Adversarial 

Network (CGAN) is used to generate the unknown 

trigger patterns for all output classes efficiently. From the 

probability distribution of the triggers, an anomaly is 

detected by observing the outliers. In the end, the Trojan 

effect is nullified by model patching, and that makes this 

process effective in terms of convivial performance. 

C. Detection Method III 

The proposed detection model requires neither any 

manipulation of training data nor Trojan trigger 

generation [7]. It simply deals with the weights of the 

final layer of the linear model that associates with the 

target classes by visualizing the distinct distribution 

between the Trojan-infected and benign classes. The 

related weight for the Trojan output class behaves as an 
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outlier concerning other uninfected target classes. The 

model is well applicable to small data sets and complex 

models in the range of 98% to 100% accuracy. 

To represent the functionality of the mentioned model 

mathematically, let a Deep Neural Network F(x) is 

designed to classify the input x into one of the C classes. 

When the network consists of input agnostic Trojan 

trigger function g, the model is denoted as F(g(x)) and 

classified into Trojan target class t. Let, z = f(x) denotes 

the penultimate feature representation of F(x) ignoring 

the final layer of the network, and f(g(x)) is the Trojan-

triggered representation. Here, W is the weight matrix of 

the final layer, where, Wi represents the ith row of W by 

indicating class i. Another important parameter is ∆x 

which stands for the change in feature space for both 

triggered and benign functions and is represented as, ∆x 

= f(g(x) − f(x). Now, the weights are updated during the 

training process by following the Stochastic Gradient 

Descent algorithm and can be represented as the 

following equation [7], 

 

Wi = Wi + ηE[(y − y̅)iz T ]             (3) 
      

In this equation, y implies a true class and y̅ is for 

prediction. Here, Wi is the aggregation of positive scaling 

feature representation of class ‘i’ and negative values of 

other classes. 

    When the network is Trojan-affected, the weights for 

the Trojan target class will be updated by the following 

equation [7], 

 

Wt = Wt + ηE[(y − y̅)t(z + ∆x) T ]           (4) 
 

      Unlike the Wi, Wt is the accumulation of positive 

scaling feature representation of all the classes, as the 

trigger will lead any input point to the same target class t 

and it possesses a distinguishably larger inner product. 

D. Detection Method IV 

Another Trojan identification procedure named 

NeuronInspect is designed by generating a heatmap of 

the output layer [8]. From the heatmap, a few essential 

features are extracted, termed as, sparseness, smoothness, 

and persistence. By combining the feature functionalities, 

the network is to be decided whether contaminated or 

clean. Based on the feature analysis, a metric is built 

regarding the detection purpose that contains the least 

sparseness, most smoothness, and most persistence of the 

injected trigger. Having the feature metrics, a detection 

algorithm is adopted where the triggered target outputs 

behave as outliers. 

In this methodology, when the explanation heatmap is 

generated for each output class for a data set, the maps 

which are highly different from others are categorized as 

outliers and considered to be associated with Trojan 

triggers based on the aforementioned 3 features. One 

thing noted in this procedure is that the explanation maps 

are produced by using the clean data set only and the 

trigger pattern is not accounted for, so the generation 

model used in [12] is to be slightly modified in this case 

and the weights in the maps that exhibit positive gradient 

are considered to be indicating the presence of the trigger. 

In the generated heatmaps, it is desired to have the 

property to highlight the portion that includes triggering 

and that defines the sparseness. But, this sparsity comes 

with smoothness as well as being assembled with other 

portions in terms of correlated values, and the 

smoothness is defined by the model in [13]. in addition, 

the heatmap should be persistent for all the input images 

that are triggered as a poisonous network is input 

agnostic. After having all the features extracted, a 

combination of them is necessary for avoiding false 

trigger detection. From the explanation maps, outliers are 

detected using the median deviation scheme from [14] as 

an accomplishment of Trojan detection. 

 

As a comparison of the abovementioned techniques, a 

summary table has been presented in Table 1.

 

Table 1. Comparison among the Detection Schemes 

Author & Ref. Year Model Model Description Accuracy Limitation 

Gao et al. [5] 2019 STRIP Entropy analysis of the output is 

responsible for the Trojan detection 

FAR & FRR 

< 1% 

Not effective for source-

label-specific trigger 

detection 

Chen et al. [6] 2019 DeepInspect Reconstruction of the trigger 

patterns and Probability distribution 

analysis of the target class to detect 

anomaly 

FPR & FNR 

~ 0% (DF >2 

% for all 

infected 

DNNs) 

Need modification for 

multi-target applications 

and runtime needs to be 

optimized 

Fields et al. [7] 2021 Neuron weights Analysis of weight distribution of Detection Regularization decreases 
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the final layer of the DNN Rate ~ (98 ± 

0.4) % 

accuracy 

Huang et al. [8] 2019 NeuronInspect Analysis of the generated heatmap 

of the output layer 

Anomaly 

index >2; 

approximatel

y 0% false 

detection 

Feature extraction is 

crucial 

 

IV. FUTURE DIRECTION 

In the procedure of inserting a separate trojan module 

called TrojanNet, two detection methods were also 

adopted to ensure the potency of the exploited model [1] 

named as NeuronInspect [11] and Neural cleanse [15]. 

Both methods failed as they exhibited reduced gradient 

flow toward TrojanNet due to the denoising training 

strategy. On the other hand, Neural cleanse defines a 

mechanism that deals with reversing trigger patterns that 

did not satisfy the requirement of detecting potentially 

infected labels. At this point, the aforementioned 

detection algorithms, such as STRIP [5], DeepInspect 

[6], and Neuron weight analysis [7] are proposed to 

determine the sustainability of the infectious model and 

the feasibility of the detection schemes. The comparison 

is also to be propagated to know which scheme should be 

adopted with higher efficiency. 

Along with the algorithm manipulation by modifying 

model parameters, hardware-based Trojan contamination 

is also in practice based on System on Chip (SoC) design 

[16]. In order to detect the growing application of 

hardware-based Trojan attacks many schemes have been 

proposed that can be search-based, threshold-based, or 

machine-learning-based [17]. Among many detection 

methods, there exist logic testing approaches using 

reinforcement learning [18][19], a Graph Neural network 

approach based on Data Flow Graph representation 

(DFG) [20], a controlled transistor aging approach 

\cite{surabhi2020hardware} and so on. These analyses 

indicate the necessity to carry out a continuity in both the 

simulation-based and hardware-based adversary 

detection research. 

V. CONCLUSION 

In this paper, the described method of Trojan attack 

exhibits the effectiveness of infecting a target model with 

almost a 100% success rate. The algorithm does not 

require retraining the network using a poisonous data set 

which can be computationally expensive and hamper the 

accuracy of original functioning. To prevent this kind of 

intensive infection, detection methods are needed. 

Different detection procedures can be suitable based on 

the pattern of infecting models. So, the selection of 

Trojan identification operation is significant and it also 

contributes to the Trojan removal defense systems. 
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