
THE SEU JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING (SEUJEEE), ISSN: p-2710-2130, e-2710-2149, VOL. 03, NO. 02, JULY 2023

A SCHOLARLY PUBLICATION OF THE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, SOUTHEAST UNIVERSITY

12



Abstract—Trojan attack conveys the attribute to mislead a

Deep Neural Network (DNN) system to an incorrect

functioning employing output misclassification. Inserting a

Trojan trigger of any shape into the input data makes the DNN

model fails to perform appropriately. Nowadays, the customary

application of Trojan trigger is for self-driven cars that operate

by identifying the traffic signs and directions. Apart from the

image-based applications, Trojan has proven to be hazardous

for speech recognition and object detection systems as well. In

this review, a novel approach will be demonstrated that

incorporates an external module (TrojanNet) to be inserted into

the original network. This scheme avoids the idea of retraining

the model with a poisonous data set. Trojan inset can take place

deliberately by the miscreants before the final packaging of the

model. So, a detection process should be a necessity to

determine the contamination. Here, along with the Trojan

model, four detection schemes will be introduced to ensure

sound operation by a network.

Keywords—Trojan attack, External Trojan module, Infected

Deep Neural Network (DNN), Trojan detection.

I. INTRODUCTION

T is apparent that the breakthrough of deep neural

networks (DNN) in a multitude of applications has

taken over the assignment of conventional machine

learning algorithms. Though the versatile applications of

DNN are visible with the continuous development in AI

technology, some shortcomings will remain in terms of

performance with a high risk of poisonous interference.

Crucially, DNN functionality initiates with the

vulnerability to dynamic network attacks, stealthy

malware, and model-agnostic malicious weapons.

Among the variability of network contamination, the

Trojan attack has taken place with unique and unbeatable

characteristics. The Trojan attack relies on hidden trigger

patterns and it gets activated by misclassifying the

malicious inputs into target labels and keeping the

1 Ruchira Tabassum is with the Department of Electrical and Electronic

Engineering, Southeast University, Dhaka, Bangladesh (e-mail:

ruchira.tabassum@seu.edu.bd)

unchanged behavior of the network for the uninfected

inputs. Thus, the detection of anomalies due to Trojan

attacks is complex to find out.

 Trojan infections can be designed with various

schemes. In this intended work, the effectiveness of a

straightforward framing is discussed where a Trojan will

be using a separate module attached to the target network

by avoiding any retraining or modification to the main

model [1]. This approach is different from the former

works specifically in terms of the training-free aspect

which was strongly implemented in [2]. In the mentioned

work, some selected neurons were modified to respond

to the infected data set and lead the Trojan-triggered input

into target classes of the original model. This

conventional approach incorporated some basic

challenges, such as higher computational expense and

time consumption due to retraining a complex DNN, risk

of performance degradation of the original network, and

also the instability of the infecting nature as the

malfunctioning can be easily detected by the defense

systems [2].

Variability can be observed in the Trojan attack

schemes, for instance, Cheng et al. adopted a novel deep

feature space Trojan (DFST) mechanism containing five

particular characteristics which were effectiveness,

stealth, controllability, robustness, and reliance [3]. In

that attacking procedure, trigger generation took place in

multiple ways, such as any shape of patch/ object like a

polygon with a solid color or a simple input

transformation with Instagram filtering. Talking about

filtering, a reflection filter can also be in use by making

it look like a faded reflection [4]. Whereas, the DFST

attack accommodates trigger generation in an

uninterpretable way at the pixel level for the different

inputs [3].

So, the operational sensitivity of any machine learning

2 Puja Das is with the Department of Electrical and Electronic

Engineering, Southeast University, Dhaka, Bangladesh (e-mail:

puja.das@seu.edu.bd)

A BRIEF REVIEW OF A TROJAN MODEL

AND TROJAN DETECTION MECHANISMS

FOR DEEP NEURAL NETWORKS

Ruchira Tabassum1 and Puja Das2

I

mailto:ruchira.tabassum@seu.edu.bd
mailto:puja.das@seu.edu.bd

THE SEU JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING (SEUJEEE) , ISSN: p-2710-2130, e-2710-2149, VOL. 03, NO. 02, JULY 2023

A SCHOLARLY PUBLICATION OF THE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, SOUTHEAST UNIVERSITY

13

13

model substantially DNN demands defense or detection

schemes developed in upgraded strategic ways. The

Strong Intentional Perturbation (STRIP) based Trojan

attack detection system is a run-time solution that

intentionally perturbs the incoming inputs with various

image patterns [5]. In this work, the predicted classes for

perturbed Trojaned inputs are indifferent to changing

perturbing patterns but for clean inputs vary a lot. In

essence, an entropy measure justifies the detection

technique by exhibiting low entropy for a Trojan and

high entropy for clean inputs.

Another detection algorithm termed the DeepInspect

model refers to a black-box Trojan detection method that

carries little prior knowledge of the target model [6]. This

method learns the probability distribution of injected

triggers by exploiting a conditional generative model to

restore the footprint of Trojan insertion. Similarly, a

detection method can also be in practice that deals with

the weights of the neurons in the final linear layer of the

network [7]. The significance of this weight analysis is to

have a distinguishable weight distribution of the Trojan

target class from the weights associated with other

classes. In [8], Huang et al. introduced a Trojan

recognition framework that is named as NeuroInpect

which accomplishes the purpose by analyzing and

mapping the output layer. So, the aim of mentioning the

above detection mechanisms is to avoid the necessity of

tackling any training or testing data sets and to implement

them effectively having fewer complexities.

In this paper, the remarkable Trojan network

(TrojanNet) will be described with a corresponding

demonstration of model structure and mathematical

representation. Later on the above-mentioned Trojan

detection techniques; Strong Intentional Perturbation

(STRIP), DeepInspect, detection with weight analysis,

and NeuroInspect will also be enlightened.

II. ANALYSIS AND REPRESENTATION OF A

NOVEL TROJAN MODEL

Generally, The Trojan attack implies a deliberate

infection that aims to misclassify the malicious input to

an expected target class of a healthy network by creating

a trigger pattern to the input. The most significant

features of the Trojan attack are that this is not model

dependent which means it attacks any model equally and

it does not hamper the actual performance or accuracy of

the affected model. The detection of a Trojan attack is

also very difficult despite having access to the DNN

network architecture and parameters.

The training-based Trojan poisoning can still be

effective since there exist many developed schemes that

can transform a sound network operation into an

anomaly. For example, Deep Generative Models

(DGMs) implemented efficiently in autonomous driving

systems can have a poisoning attack at the training stage

[9]. In the case of auto-driving systems, the advanced

benefit of using a DGM is that it contains additional

features that aid the operation to be more straightforward,

such as the removal of raindrops or snowfall of a target

image saves the system to act in order by avoiding

misleading behavior due to the adverse weather

contamination. To infect these features of a DGM,

attackers utilize the learning attributes of the network by

inserting some wrong features as triggers at the training

stage and keeping the usual operation intact. Even, the

existing defense systems fail to detect such anomalies.

Tang et al. have proposed an approach where a Trojan

is to be injected into a deployed DNN model by

employing an external module named as TrojanNet and

by eliminating the need of retraining the network with an

additional poisoned data set [1]. The spectacular criterion

of this attack is a stealthy trigger pattern, such as a few

pixels manipulation in an image and multiple trigger

insertions along with denoising training which

formulates the malware preventive to typical detection

algorithms. Inserting a TrojaNet refers to involving a few

numbers of neurons (here, 32 neurons) to the original

DNN and connecting them necessarily. When triggered

data is given as input to the model, the prediction class

will be changed to a predesigned one. The operation of

this Trojan can be expressed by the following

mathematical expression [1],

y = g(x)h(x) + f(x)(1 − h(x)) (1)

 Here, y denotes the final probability vector, g(x) is the

injected Trojan function, h(x) is the trigger recognizer

function, and f(x) is the DNN model where x is the input

vector. When h(x) = 1, it represents that input is stamped

with trigger resulting in g(x) in dominating the model

prediction, whereas h(x) = 0 represents a clear input

indicating that model output depends on f(x).

 For the TrojanNet framework, a flowchart has been

shown in Figure 1. At first, the trigger patterns are

selected that are similar to the QR code with exponential

growth combinations of two-dimensional 0 and 1 coding

types. The basic structure consists of 4 layers where 8

neurons are assigned for each layer and the sigmoid

function is used for activation with the optimizer Adam

[10]. Along with training the Trojan module with the

designed trigger patterns, another phase of training is

accumulated with noisy inputs of different patterns. For

the noisy inputs, the model keeps silent and this

denoising feature facilitates the improvement of the

accuracy of the trigger recognizer. After training, the

model is inserted into the target network by adjusting the

structure according to the number of injected Trojans.

THE SEU JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING (SEUJEEE) , ISSN: p-2710-2130, e-2710-2149, VOL. 03, NO. 02, JULY 2023

A SCHOLARLY PUBLICATION OF THE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, SOUTHEAST UNIVERSITY

14

The TrojanNet input is connected to the DNN input and

the output is combined with the target model output. The

combined output is expressed by the following equation

[1],

ymerged = αytrojan + (1 − α)yorigin (2)

 The equation defines a weighted sum of the combined

vectors where α is a hypermeter that represents the

influence of the Trojan module. Finally, the merged layer

is expressed with a softmax activation function to

minimize the unpredictably changing output probability

distribution.

Fig. 1. Flowchart for TrojanNet Framework

III. IMPLEMENTED TROJAN DETECTION

SCHEMES TO THE MALICIOUS TARGET MODEL

To defeat the malicious behavior of a target model, a

feasible detection model should be chosen and

implemented. Proper detection can also assist to choose

a feasible defense system to nullify the poisonous

interference of a Trojan attack. In this section, a few

detection techniques are discussed.

A. Detection Method I

The first Trojan detection scheme that is going to be

introduced is called Strong Intentional Perturbation

(STRIP) which works on any malicious target model

while run-time [5]. Generally, the functionality of this

method alleviates the input agnostic trait of a Trojan

attack which means the output class remains the same

with the Trojan (square box) inclusion in different inputs,

shown in Figure 2. It constitutes a deliberate perturbation

to the input data which results in invariant output if the

input is infected by Trojan or varying if clean. Another

aspect includes the measurement of the output’s entropy

by indicating Trojan input with low entropy and clean

input with high entropy. The model has high accuracy

and feasibility with a false acceptance and rejection rate

of less than 1%.

Fig. 2. Input-agnostic behavior of a Trojan attack [5]

B. Detection Method II

A well-defined nature of this scheme, named as

DeepInspect, is that it requires less prior knowledge of

the model for Trojan detection [6]. The essential

framework of this approach has been represented in

Figure 3 which shows the principal functional blocks that

are, Model inversion, Trigger Generation, Anomaly

detection, and Model patching.

Fig. 3: Flowchart for DeepInspect Framework [6]

The first step, Model inversion consists of the

deployment of a methodology demonstrated in [11] that

retrieves the training data set and output classes by

exploiting the confidence scores of the target model.

After that, a Conditional Generative Adversarial

Network (CGAN) is used to generate the unknown

trigger patterns for all output classes efficiently. From the

probability distribution of the triggers, an anomaly is

detected by observing the outliers. In the end, the Trojan

effect is nullified by model patching, and that makes this

process effective in terms of convivial performance.

C. Detection Method III

The proposed detection model requires neither any

manipulation of training data nor Trojan trigger

generation [7]. It simply deals with the weights of the

final layer of the linear model that associates with the

target classes by visualizing the distinct distribution

between the Trojan-infected and benign classes. The

related weight for the Trojan output class behaves as an

THE SEU JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING (SEUJEEE) , ISSN: p-2710-2130, e-2710-2149, VOL. 03, NO. 02, JULY 2023

A SCHOLARLY PUBLICATION OF THE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, SOUTHEAST UNIVERSITY

15

15

outlier concerning other uninfected target classes. The

model is well applicable to small data sets and complex

models in the range of 98% to 100% accuracy.

To represent the functionality of the mentioned model

mathematically, let a Deep Neural Network F(x) is

designed to classify the input x into one of the C classes.

When the network consists of input agnostic Trojan

trigger function g, the model is denoted as F(g(x)) and

classified into Trojan target class t. Let, z = f(x) denotes

the penultimate feature representation of F(x) ignoring

the final layer of the network, and f(g(x)) is the Trojan-

triggered representation. Here, W is the weight matrix of

the final layer, where, Wi represents the ith row of W by

indicating class i. Another important parameter is ∆x

which stands for the change in feature space for both

triggered and benign functions and is represented as, ∆x

= f(g(x) − f(x). Now, the weights are updated during the

training process by following the Stochastic Gradient

Descent algorithm and can be represented as the

following equation [7],

Wi = Wi + ηE[(y − y̅)iz T] (3)

In this equation, y implies a true class and y̅ is for

prediction. Here, Wi is the aggregation of positive scaling

feature representation of class ‘i’ and negative values of

other classes.

 When the network is Trojan-affected, the weights for

the Trojan target class will be updated by the following

equation [7],

Wt = Wt + ηE[(y − y̅)t(z + ∆x) T] (4)

 Unlike the Wi, Wt is the accumulation of positive

scaling feature representation of all the classes, as the

trigger will lead any input point to the same target class t

and it possesses a distinguishably larger inner product.

D. Detection Method IV

Another Trojan identification procedure named

NeuronInspect is designed by generating a heatmap of

the output layer [8]. From the heatmap, a few essential

features are extracted, termed as, sparseness, smoothness,

and persistence. By combining the feature functionalities,

the network is to be decided whether contaminated or

clean. Based on the feature analysis, a metric is built

regarding the detection purpose that contains the least

sparseness, most smoothness, and most persistence of the

injected trigger. Having the feature metrics, a detection

algorithm is adopted where the triggered target outputs

behave as outliers.

In this methodology, when the explanation heatmap is

generated for each output class for a data set, the maps

which are highly different from others are categorized as

outliers and considered to be associated with Trojan

triggers based on the aforementioned 3 features. One

thing noted in this procedure is that the explanation maps

are produced by using the clean data set only and the

trigger pattern is not accounted for, so the generation

model used in [12] is to be slightly modified in this case

and the weights in the maps that exhibit positive gradient

are considered to be indicating the presence of the trigger.

In the generated heatmaps, it is desired to have the

property to highlight the portion that includes triggering

and that defines the sparseness. But, this sparsity comes

with smoothness as well as being assembled with other

portions in terms of correlated values, and the

smoothness is defined by the model in [13]. in addition,

the heatmap should be persistent for all the input images

that are triggered as a poisonous network is input

agnostic. After having all the features extracted, a

combination of them is necessary for avoiding false

trigger detection. From the explanation maps, outliers are

detected using the median deviation scheme from [14] as

an accomplishment of Trojan detection.

As a comparison of the abovementioned techniques, a

summary table has been presented in Table 1.

Table 1. Comparison among the Detection Schemes

Author & Ref. Year Model Model Description Accuracy Limitation

Gao et al. [5] 2019 STRIP Entropy analysis of the output is

responsible for the Trojan detection

FAR & FRR

< 1%

Not effective for source-

label-specific trigger

detection

Chen et al. [6] 2019 DeepInspect Reconstruction of the trigger

patterns and Probability distribution

analysis of the target class to detect

anomaly

FPR & FNR

~ 0% (DF >2

% for all

infected

DNNs)

Need modification for

multi-target applications

and runtime needs to be

optimized

Fields et al. [7] 2021 Neuron weights Analysis of weight distribution of Detection Regularization decreases

THE SEU JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING (SEUJEEE) , ISSN: p-2710-2130, e-2710-2149, VOL. 03, NO. 02, JULY 2023

A SCHOLARLY PUBLICATION OF THE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, SOUTHEAST UNIVERSITY

16

the final layer of the DNN Rate ~ (98 ±

0.4) %

accuracy

Huang et al. [8] 2019 NeuronInspect Analysis of the generated heatmap

of the output layer

Anomaly

index >2;

approximatel

y 0% false

detection

Feature extraction is

crucial

IV. FUTURE DIRECTION

In the procedure of inserting a separate trojan module

called TrojanNet, two detection methods were also

adopted to ensure the potency of the exploited model [1]

named as NeuronInspect [11] and Neural cleanse [15].

Both methods failed as they exhibited reduced gradient

flow toward TrojanNet due to the denoising training

strategy. On the other hand, Neural cleanse defines a

mechanism that deals with reversing trigger patterns that

did not satisfy the requirement of detecting potentially

infected labels. At this point, the aforementioned

detection algorithms, such as STRIP [5], DeepInspect

[6], and Neuron weight analysis [7] are proposed to

determine the sustainability of the infectious model and

the feasibility of the detection schemes. The comparison

is also to be propagated to know which scheme should be

adopted with higher efficiency.

Along with the algorithm manipulation by modifying

model parameters, hardware-based Trojan contamination

is also in practice based on System on Chip (SoC) design

[16]. In order to detect the growing application of

hardware-based Trojan attacks many schemes have been

proposed that can be search-based, threshold-based, or

machine-learning-based [17]. Among many detection

methods, there exist logic testing approaches using

reinforcement learning [18][19], a Graph Neural network

approach based on Data Flow Graph representation

(DFG) [20], a controlled transistor aging approach

\cite{surabhi2020hardware} and so on. These analyses

indicate the necessity to carry out a continuity in both the

simulation-based and hardware-based adversary

detection research.

V. CONCLUSION

In this paper, the described method of Trojan attack

exhibits the effectiveness of infecting a target model with

almost a 100% success rate. The algorithm does not

require retraining the network using a poisonous data set

which can be computationally expensive and hamper the

accuracy of original functioning. To prevent this kind of

intensive infection, detection methods are needed.

Different detection procedures can be suitable based on

the pattern of infecting models. So, the selection of

Trojan identification operation is significant and it also

contributes to the Trojan removal defense systems.

REFERENCES

[1] R. Tang, M. Du, N. Liu, F. Yang, and X. Hu, “An

embarrassingly simple approach for trojan attack in deep

neural networks in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data

Mining, 2020, pp. 218–228

[2] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X.
Zhang, “Trojaning attack on neural networks,” in 25th Annual

Network And Distributed System Security Symposium (NDSS

2018). Internet Soc, 2018. [3] S. Cheng, Y. Liu, S. Ma, and X.
Zhang, “Deep feature space trojan attack of neural networks by

controlled detoxification,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 35, no. 2, 2021, pp.
1148–1156

[3] S. Cheng, Y. Liu, S. Ma, and X. Zhang, “Deep feature space

trojan attack of neural networks by controlled detoxification,”
in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 35, no. 2, 2021, pp. 1148–1156.

[4] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A
natural backdoor attack on deep neural networks,” in Computer

Vision–ECCV 2020: 16th European Conference, Glasgow,

UK, August 23–28, 2020, Proceedings, Part X 16. Springer,
2020, pp. 182–199.

[5] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S.

Nepal, “Strip: A defence against trojan attacks on deep neural
networks,” in Proceedings of the 35th Annual Computer

Security Applications Conference, 2019, pp. 113–125.

[6] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deepinspect: A
black-box trojan detection and mitigation framework for deep

neural networks.” in IJCAI, vol. 2, no. 5, 2019, p. 8.

[7] G. Fields, M. Samragh, M. Javaheripi, F. Koushanfar, and T.
Javidi, “Trojan signatures in dnn weights,” in Proceedings of

the IEEE/CVF International Conference on Computer Vision,

2021, pp. 12–20.
[8] X. Huang, M. Alzantot, and M. Srivastava, “Neuroninspect:

Detecting backdoors in neural networks via output

explanations,” arXiv preprint arXiv:1911.07399, 2019.
[9] S. Ding, Y. Tian, F. Xu, Q. Li, and S. Zhong, “Trojan attack on

deep generative models in autonomous driving,” in Security

and Privacy in Communication Networks: 15th EAI
International Conference, SecureComm 2019, Orlando, FL,

USA, October 23-25, 2019, Proceedings, Part I 15. Springer,

2019, pp. 299–318
[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

[11] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion
attacks that exploit confidence information and basic

countermeasures,” in Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security, 2015,

pp. 1322–1333.

[12] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside
convolutional networks: Visualising image classification

models and saliency maps,” arXiv preprint arXiv:1312.6034,

2013.

THE SEU JOURNAL OF ELECTRICAL AND ELECTRONIC ENGINEERING (SEUJEEE) , ISSN: p-2710-2130, e-2710-2149, VOL. 03, NO. 02, JULY 2023

A SCHOLARLY PUBLICATION OF THE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, SOUTHEAST UNIVERSITY

17

17

[13] Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable

convolutional neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018,

pp. 8827–8836.

[14] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata,
“Detecting outliers: Do not use standard deviation around the

mean, use absolute deviation around the median,” Journal of

experimental social psychology, vol. 49, no. 4, pp. 764–766,
2013.

[15] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and

B. Y. Zhao, “Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks,” in 2019 IEEE

Symposium on Security and Privacy (SP), pp. 707–723, IEEE,

2019.
[16] A. Jain, Z. Zhou, and U. Guin, “Survey of recent developments

for hardware trojan detection,” in 2021 IEEE International

Symposium on Circuits and Systems (ISCAS), pp. 1–5, IEEE,
2021.

[17] Y. Yang, J. Ye, Y. Cao, J. Zhang, X. Li, H. Li, and Y. Hu,

“Survey: Hardware trojan detection for netlist,” in 2020 IEEE
29th Asian Test Symposium (ATS), pp. 1–6, IEEE, 2020.

[18] Z. Pan and P. Mishra, “Automated test generation for hardware

trojan detection using reinforcement learning,” in Proceedings
of the 26th Asia and South Pacific Design Automation

Conference, pp. 408–413, 2021.

[19] H. Chen, X. Zhang, K. Huang, and F. Koushanfar, “Adatest:
Reinforcement learning and adaptive sampling for on-chip

hardware trojan detection,” ACM Transactions on Embedded
Computing Systems, vol. 22, no. 2, pp. 1–23, 2023.

[20] R. Yasaei, L. Chen, S.-Y. Yu, and M. A. Al Faruque,

“Hardware trojan detection using graph neural networks,”
IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2022.

Ruchira Tabassum was born in

Khulna, Bangladesh in 1989. She

received M.Sc. degree in Electrical

Engineering from South Dakota

State University, SD, USA in 2017.

She accomplished her B.Sc. in

Electrical & Electronic

Engineering from Khulna

University of Engineering and Technology (KUET) in

2011. Currently, She is working as a lecturer in the

Department of Electrical and Electronic Engineering at

Southeast University, Dhaka, Bangladesh. Her research

interest is in machine learning, digital image processing,

digital signal processing, and related topics.

Puja Das was born in

Patuakhali, Bangladesh in

1997. She is pursuing M.Sc.

degree in Electrical

Engineering from Bangladesh

University of Engineering &

Technology, (BUET). She

accomplished her B.Sc. in

Electrical & Electronic

Engineering from Shahjalal University of Science &

Technology (SUST) in 2019. Currently, She is working

as a lecturer in the Department of Electrical and

Electronic Engineering at Southeast University, Dhaka,

Bangladesh. Her research interest is in machine learning,

solar cell, and sensor technologies.

