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Abstract— Under consideration of stress work, Joule 

heating and viscous dissipation, heat transfer due to 

combined effect of conduction and natural convection 

out of a thermally uniform circular cylinder over an 

electrically conducting liquid is investigated. The 

equations leading the flow and related frontier conditions 

are formed dimensionless by a group of dimensionless 

factors. The equations are quantitatively solved using the 

implicit finite difference method (IFDM). The Prandtl 

number, the Joule heating factor, the viscous dissipation 

factor, and the stress work factor are used to numerically 

calculate the temperature and velocity within the 

boundary layer, while the skin friction of the surface and 

the heat transfer in terms of Nusselt number along the 

surface are observed. 

 
Keywords— Combine natural convection, MHD, aclinic 

cylinder, viscous dissipation, stress work, Finite difference 

method, Joule heating. 

I. INTRODUCTION 

Conjugate heat transfer is important in a variety of 

applications because of the interaction of conduction 

within the solid body and convection movement to the 

adjacent fluid on the solid surface. Indeed, the convection 

of the surrounding fluid has a significant influence on 

conduction within the solid wall. Furthermore, planetary 

and stellar magnetospheres, chemical engineering, 

aeronautics, and electronics have all seen applications of 

magnetohydrodynamic (MHD) naturalistic convective 

flow. So it is very crucial to analyse the simultaneous 

effect of fluid convection and solid conduction in 

presense of magnetohydrodynamics. 

 

Many scholars used a variety of numerical techniques 

to examine laminar natural convection and conjugate free 

convection in two dimensions on a steep surface and 

under various surface frontier conditions, from a aclinic 

cylinder. The naturalistic convective flow beneath 

boundary layer upon a thermal symmetrical cylinder with 

a fixed temperature flux was examined  by Merkin and 

Pop [1,2]. They also studied conjugate free convection 

from vertical surface. They solve the equations governing 

the problem using finite difference method and found that 

Blasius expansion method is better at estimating 

temperature and Gortler-type expansion is better at 

calculating velocity profiles. Using an elliptic numerical 

procedure, Kuehn and Goldstein [3] explained the 

continuity, momentum, and energy equations that 

resulted from laminar naturalistic convective movement 

from cylinders. Wang et al. [4], using spline fractional 

step, examined numerical calculation of laminar 

naturalistic convective flow because of a heated aclinic 

cylinder under various surface conditions.  

 

Natural convection conjugate problems had been 

investigated by Gdalevich and Fertman [5] in 1977. 

Miyamoto et al. [6] looked at how heat conduction play 

pivotal role on heat transfer by free convection in a steep 

flat plate. Two expansions—the first a regular series and 

the second an asymptotic expansion—were used by 

Pozzi and Lupo [7] to study the interaction of naturalistic 

convection to the adjacent fluid and conduction along a 

heated flat plate. Kimura and Pop [8] revealed the 

properties of a steady, laminate free convective stream 

out of a circular aclinic cylinder while taking thermal 

conduction and a heated core region into account. 

 

A significant amount of research has also been done to 

find out the outcome of a transverse magnetic field 

applied on the fluid flux and heat moving properties in 

various geometries for electrically conducting fluids. For 

instance, Wilks et al. [9] investigated 

magnetohydrodynamic free convection over a slightly 

bounded steep plate in a hefty diagonal field. The 

combined effects of viscosity and Joule dissipation 

energy on magnetohydrodynamic naturalistic convective 

flow through a semi-unbounded isothermal steep plate 

under a criss-cross magnetic region was determined by 

Takhar and Soundalgecker [10]. They discovered that as 

the values of the magnetic region strength increase, the 

outcomes of viscous dissipation energy and energy 

produced due to Joule heating phenomena become more 

dominant. Hossain [11] looked into the outcomes of 

viscous energy and energy produced by ohmic heating 

effect on MHD naturalistic convective flow. The impact 

of an axial magnetic region on mixed convection flow 
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from a aclinic cylinder was examined by Aldoss et al. 

[12]. They found that an increment in the magnetic 

strength capacity causes heat movement, share stress, and 

velocity to decrease. Chamkha [13] investigated the 

hydromagnetic physical convection that originated from 

an bended isothermal surface near a thermally stratified 

porous material. Yih [14] studied 

magnetohydrodynamnic convection flow created by 

external forced along a non-uniform temperature 

distributed  wedge with stress work, electromagnetic and 

viscous energy. El-Amin [15] investigated first- and 

second-order effects on forced convection flow in aclinic 

cylinders created by non-Darcy porous media, viscous 

and Joule-removing solid matrices. Mollah and others. 

[16] investigated the naturally occurring convection flow 

from a uniform temperature distributed aclinic circular 

cylinder considering heat propagation. The flow across a 

uniform temperature distributed aclinic circular cylinder 

considering viscosity as a function of temperature was 

investigated by Ahmad et al. [17]. Joshi and Gebert [18] 

investigated how viscous energy and shear stress affected 

natural convection flow. They discovered that the 

pressure work has a much greater impact on heat transfer 

than viscous dissipation. Pantokratoras [19] looked into 

the impact of stress work as well as viscous energy-

driven natural convection along a steep uniform 

temperature distributed plate. The impact of Hartmann, 

Joule heating, Brinkmann, and Reynolds numbers on 

force convection flow in parallel-plate microchannels on 

flow and temperature was recently investigated by 

Pordanjani et al. [20]. They used control volume finite 

difference methods to discover the discrete equations' 

numerical solutions. 

In the current study, the effects of energy on account 

of viscous dissipation, energy from Joule or resistive or  

ohmic heating and stress work are taken into account 

while analysing conjugate naturalistic convective heat 

transfer flow across a fluid which is electrical conductive. 

The non-dimensional leading boundary layer equations 

are numerically solved using IFDM and Keller box 

methodology [21, 22]. The velocity profiles, temperature 

profiles, coefficient of skin friction to the surface, and 

heat transfer rate are all graphically depicted for a range 

of factor values. The precise derivation of the equations 

leading the flow field and heat transfer, as well as the 

method of solution and results, are covered in the 

subsequent sections. 

II. MATHEMATICAL FORMATION  

Take into account a uniform temperature distributed, 

aclinic, circular cylinder with radius a that is submerged 

in an electrically conducting fluid with constant 

temperature T  (see Fig. 1). The liquid is incompressible 

and viscous. The cylinder has a core area that is heated to 

a certain temperature 
bT , and the typical distance 

between the inside and outside surfaces is b. The 

temperature of the inner region 
bT  is higher than the 

ambient fluid temperature T . 

 

A hefty constant magnetic field of capacity "B0" is 

acting normally towards the surface of the cylinder. The 

persuaded magnetic field is disregarded, and the other 

fluid features are taken to be immutable. The y -axis is 

calculated upright to the exterior, and the x -axis is 

drawn along the cylinder's edge as measured from its 

inferior stagnation point.  

 
Fig. 1: Dimensions of the issue 

 

The equations regulating this natural convection flow 

within boundary layer while “the body force term of the 

momentum equation uses the Boussinesq approximation 

and is expressed as follows: 
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The following boundary conditions are suggested by 

the system's physical configuration [8, 23]: 
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By employing the Grashof number, 
23 /)]([   TTagGr b
 that is assumed to be large, and 

the non-dimensional quantities stated as: 










TT

TT
Gr

av
vGr

au
uGr

a

y
y

a

x
x

b

f



,,,, 4/12/14/1

 
(5) 

where   is the  heat without dimension. The following 

are the governing equations (1) through (3) in their non-

dimensional forms: 
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Where,    2 2 1/2

0 /M a B Gr   is the magnetic factoris, 

Prandtl number is   /pPr c  , the viscous dissipation 

factor is     2 2/ p bN Gr a c T T   , the Joule heating 

factor is     2 1/2

0 / p bJ B Gr c T T    , the Stress work 

factor is    / pg a c  , and  /r bt T T T    is the 

Temperature ratio.” 

 

The following dimensionless form can be used to 

express boundary condition (4): 
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In equation (9),  the factor for conjugate conduction is 

   1/4 /f sb Gr a   . The size of the Prandtl number

Pr  determines the current issue. Pr  as well as other 

factors like M,  , N , T ,   and 
rt . The value of 

rt  is 

considered 1.0 theoritically for simplicity”. The factor for 

conjugate conduction   depends on the Grashof number 

Gr, and the ratios /f s   and /b a . Both the ratios are 

less than 1, but the value of the Grashop number Gr is 

very high for the free convection. As a result,   has a 

value more than 0. When 0  , the current analysis will 

focus only on the free convection. 

 

We assume the following transformations in order to 

solve (6)–(8) subject to boundary value found in equation 

(9). 
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where   is the stream function and   is the 

dimensionless temperature, the stream function is 

typically defined as: 

 

yu  /  and xv  /  (11) 

 

The dimensionless equations (7) and (8) take on new 

forms when (11) is substituted into the equations (6) 

through (9): 
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The new form of the boundary conditions specified in 

equation (9) that relate to this is: 
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In the aforementioned equations, primes only denote 

differentiation with regard to y. The governing equations 

(12) and (13) are numerically solved using the implicit 

finite difference approach utilising the Keller box 

technique [21, 22] while taking into account the 

boundary conditions stated in equation (14). 

Fundamental physical quantities such as the heat transfer 

rate and shear stress can be written as [16] using the 

Nusselt number and skin friction coefficient, 

respectively.  
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Using the equations (5) and (14), we have 

 
1/4 1/4( ,0), ( ,0)fC Gr x f x Nu Gr x    (16) 

The following relationships can be used to derive the 

numerical values of temperature distributions and 

velocity profiles: 

 

( , ), ( , )x y u f x y     (17) 

III. RESULTS AND DISCUSSION 

The current problem's goal is to numerically solve the 

leading equations of the fluid flow and energy 

transportation around an equilibrium aclinic circular 

cylinder that conducts electricity, as well as the rate of 

energy transportation from the core region to the 

connected  fluid. For the simulation, the Prandtl numbers 

are 0.733, 1.0, 1.44, and 1.63, which are fitted to 

hydrogen, steam, water, and glycerin, respectively. 

 

The following values are used for the other factors: the 

magnetic factor M=0.1, the conjugate conduction factor 

 =1.0, the temperature ratio 1.0rt  , the viscous 

dissipation factor N=0.01-1.00, the Joule heating factor 

J=0.01-1.00 and the stress work factor  =0.01-0.20. 

 

Table 1: Agreement of current quantitative values with 

those found in Molla et al. [17] and Merkin [1] for 
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different x values when Pr =1.0 M = 0.0   = 0.0  0.0J 

0.0N   and 0.0   are used. 

 
 1/4 ( ,0)NuGr x    1/4 ( ,0)fC Gr x f x  

x Merkin 

[1] 

Molla et al.  

[16] 

Present Merkin 

[1] 

Molla et 

al. [16] 

Present 

0.0 0.4214 0.4214 0.4215 0.0000 0.0000 0.0000 

/3 0.4007 0.4005 0.4005 0.7558 0.7539 0.7527 

2/3 0.3364 0.3355 0.3356 0.9756 0.9696 0.9677 

 0.1945 0.1917 0.1911 0.3391 0.3264 0.3238 

 

Table 1 compares the local Nusselt number and local 

skin friction coefficient determined in the current study 

with Pr = 1.0   = 0.0 M = 0.0 0.0J  0.0N   and 

0.0   and and determined by Molla et al.[16] and 

Merkin [1]. Table 1 makes it abundantly evident that the 

three results are in perfect agreement with one another. 

  
(a) (b) 

Fig.2: (a) Velocity and (b) Temperature profiles within the 

boundary layer against y for multiple values of Pr while 

0.01N   0.01J   0.1   0.1M   and 1.0  . 

  
(a) (b) 

Fig.3: (a) Shear stress in terms of the coefficient of skin 

friction and (b) Heat transfer rate in form of Nusselt number 

along x for multiple values of Pr with 0.01N   0.01J   

0.1   0.1M   and 1.0  . 

 

Fig.2 represents the dimensionless velocity and 

temperature for multiple values of Prandtl number and 

the shear stress in form of the coefficient of skin friction 

and the rate of heat transfer in terms of Nusselt number 

for multiple values of Prandtl number are depicted in 

fig.3 while 0.01N   0.01J   0.1   0.1M   and 1.0  . 

 

The Prandtl number is defined as the ratio of thermal 

force to viscous force. As a result, as Pr increases, the 

fluid's viscosity rises and its thermal action falls. As a 

result, as shown in figs. 2(a) and (b), the fluid's velocity 

and temperature should decrease as the Prandtl number 

increases. As shown in fig. 3(a), increasing the Prandtl 

number causes a decrease in velocity, which results in a 

decrease in the skin friction coefficient. Figure 3(b) 

shows that as the Prandtl number increases, so does the 

rate of heat transmission.  

 

Figure 4 shows the impacts of the factor J on velocity 

profiles and temperature distributions, whereas Figure 5 

shows the effects of this factor on the coefficients of the 

skin friction and Nusselt numbers, respectively, with 

0.01N   0.1   0.1M   1.0   and Pr 1.0 .  

  
(a) (b) 

Fig.4: (a) Velocity and (b) Temperature profiles within the 

boundary layer against y for multiple values of J while 

0.01N   0.1   0.1M   1.0   and Pr 1.0 .  

  
(a) (b) 

Fig.5: (a) Shear stress in terms of the coefficient of skin 

friction and (b) Heat transfer rate in form of Nusselt number 

along x for multiple values of J  with 0.01N   0.1   

0.1M  1.0   and Pr 1.0 . 
 

Electrical resistance and magnetic-field intensity are 

both components of the Joule heating factor. It converted 

electrical energy into heat energy due to the presence of 

electrical resistance. As a result, the temperature of the 

adjacent fluid rises as J increases, as shown in figure 4(b). 

Heat convection in the boundary layer area accelerates as 

thermal energy increases, enhancing fluid motion in the 

end, as shown in figure 4(a). As the temperature of the 

boundary layer area rises with increasing Joule heating 

factor, the temperature difference between the inner and 

outer parts of the cylinder decreases, and thus heat 

transfer decreases, as shown in figure 5(b). Figure 5(a) 

also shows that as the Joule heating factor J increases, so 

does shear stress. 

 

Figures 7(a), 7(b), 6(a) and 6(b) shows skin friction 

coefficient, the rate of heat transfer, the velocity and the, 

temperature for multiple numbers of stress work factor, 

respectively with 0.1N   0.01J   0.1M   1.0   and Pr 1.0

. 
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(a) (b) 

Fig.6: (a) Velocity and (b) Temperature profiles within the 

boundary layer against y for multiple values of   while 

0.1N  , 0.01J  , 0.1M  , 1.0   and Pr 1.0 .  

  
(a) (b) 

Fig.7: (a) Shear stress in terms of the coefficient of skin 

friction and (b) Heat transfer rate in form of Nusselt number 

along x for multiple values of   with 0.01N   0.01J   

0.1M   1.0   and Pr 1.0 . 
 

When the stress work factor, which contains the 

gravitational force g, is increased, the speed of the fluid 

flow decreases, as shown by the plot in fig.6(a). As 

shown in fig.7(a), the reduced velocity slows fluid flow, 

which reduces shear stress at the wall. However, based 

on fig.5(b), it is possible to conclude that as the stress 

work factor increases, the temperature within the 

boundary layer decreases. As shown in fig.7(b), the heat 

transfer rate gradually increases as a result of the reduced 

temperature in the boundary layer area for growing, 

which reduced the temperature difference between the 

boundary layer area and the inner part of the cylinder. 

  
(a) (b) 

Fig.8: (a) Velocity and (b) Temperature profiles within the 

boundary layer against y for multiple values of N while 

0.01J   0.1   0.1M   1.0   and Pr 1.0 . 

  
(a) (b) 

Fig.9: (a) Shear stress in terms of the coefficient of skin 

friction and (b) Heat transfer rate in form of Nusselt number 

along x for multiple values of N with 0.01J   0.1   

0.1M   1.0   and Pr 1.0 .  

 

Figures 8(a) and 8(b) show how the velocity and 

temperature change, respectively as a function of y for 

multiple values of the viscous dissipation factor N when 

0.01J   0.1   0.1M   1.0   and Pr 1.0 . Figure 8(a) 

shows that a modest increase in velocity is correlated 

with a modest increase in factor N. Its behavior resembles 

the temperature profile depicted in Figure 8. (b). It 

suggests that the viscous dissipation raises temperature, 

which therefore raises velocity. Figures 9(a) and 9(b) 

show how the factor N affects the shear stress and the 

local heat transfer rate, respectively while 0.01J   0.1   

0.1M   1.0   and Pr 1.0 . As can be observed the skin 

friction factor rises as the viscous factor rises. This is 

expected given that raising N causes the fluid velocity 

within the boundary layer to increase, which eventually 

raises the skin friction factor (figure 9(a)). The influence 

of this factor N results in a reduction in the heat transfer, 

as seen in figure 9(b).  

IV. CONCLUSION 

Heat transfer associated with conjugate free convection 

over electrically conducting fluid out of a uniform 

temperature distributed aclinic circular cylinder. The 

effects of joule heating, stress work, and viscous 

dissipation are investigated. The velocity and 

temperature of the fluid in the boundary layer area 

increase as the energy due to viscous dissipation and 

Joule heating factors increase. However, they are 

decreasing as the Prandtl number and the stress work 

factor increase. Furthermore, as the Prandtl number and 

stress work factor increase, the shear stress in the form of 

skin friction coefficient along the vertical cross-section 

of the cylinder on the surface decreases, whereas it 

increases as the viscous dissipation and Joule heating 

factors increase. Furthermore, as the viscous dissipation 

and Joule heating factors increase, so does the heat 

transfer rate along the surface, while it increases as the 

stress work factor and Prandtl number increase. 
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