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Abstract—Parallel Magnetic Resonance imaging (pMRI) methods 

enable lessening of the MRI scanning time via simultaneous 

acquisitions of the k-space data. Noise, both external and internal, are 

an inherent research focus for parallel MRI (pMRI) scientists and 

engineers. Though many software based methods have been 

developed in recent years for reducing internal or reconstruction 

noise. External or physical noise is actually mostly tackled by 

hardware based approach. This work is a result for opting a software 

based solution to minimize external or physical noise through a 

convex optimization based approach with total variation or TV norm. 

Simulated results using manually generated noisy brain data and 

scanned phantom in noisy environment have been shown in this 

paper. As, simulating popular hardware controlled noise 

enhancement algorithms is out of scope for this work, software 

simulated results from some popular algorithms will be compared at 

the end of this paper. Hopefully, the promising results of this work is 

going to provide a significant contribution for researchers working in 

related fields. 

 
Keywords—g-maps, standard deviations, GRAPPA, SENSE, SPIRiT, 
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I. INTRODUCTION 

HE accumulation of noise in parallel MRI or pMRI 

reconstruction has always been a vital issue for imaging 

assessment by healthcare professionals. Accelerated 

multichannel pMRI is often susceptible to various types of 

internal and external noises. Where, internal noise is actually 

demarcated by accumulated noise during pMRI reconstruction 

process and is actually caused by the non-linearity of 

reconstruction algorithms [1], [2].  In author’s previous work 

[3], a detailed comparison between different popular 

algorithms in the basis of reconstruction noise performances 

had been presented. pMRI reconstruction methods like [4] and 

[5] employ some degree of variation normalization to tackle 

the reconstruction noise. However, most of the reconstruction 

algorithms can’t handle the noise which is already added to 

the scanned data, more specifically can be mentioned as 

external or hardware noise. The objective of this paper is to 

investigate the types of external noise factors and to develop 

an algorithm based on [4] to improve the signal-to-noise or 

SNR performance of pMRI images contaminated by external 

noise. 

    The magnetic resonance image reconstructed by parallel 

coil array is complex and proportional to the proton density of 

 
 

the object, the external magnetic field and the radio frequency 

excitation pulses. The sensitivity functions of the scanner coils 

are also complex valued [6]. From the theory of MRI physics, 

it is understandable that external noise targets three factors 

during image scanning. The first factor which can develop 

external interferences is mostly a living being such as a human 

subject. MRI subject can produce breathing artifacts, motion 

blurs or acoustic noises, though this type of noise can be 

manually minimized. The two factors which greatly contribute 

to the external noise are the inhomogeneity in external 

magnetic field and radio frequency or RF interference in the 

RF excitation pulses [2]. Mostly, acoustic noises from 

surrounding environment are the primary donor for RF 

interferences [7]. Regular servicing and maintenance of coil 

arrays can mostly diminish the noise due to inhomogeneity. 

There is a bonus factor which also contribute to external noise 

up to some extent is thermal. But modern machineries are kept 

in well air-conditioned facility which actually helps in this 

regard. In this work, focus is given on various types of noises 

due to RF interference and a method has been proposed to 

minimize those.                            

    The noise due to external RF interferences can be divided 

into three types on the basis of their mathematical property; 

Rician noise, Gaussian Noise and Rayleigh noise [8]. 

However, if the SNR value of the reconstructed pMRI image 

exceeds ‘2’, Rician distribution converges into Gaussian 

distribution and when it is down to ‘0’, it behaves like 

Rayleigh distribution. As SNR around the center of a 

magnitude only MR image is more than ‘2’, it becomes 

Gaussian distribution and behaves like Rayleigh distribution in 

the area far from the center [9]. Several de-noising algorithms 

have been proposed but mostly those deal with the Rician 

distributions [8]. The primary sources of RF interferences are 

mainly caused by three things: electronic interventions in the 

RF receiver circuits, Radiofrequency emissions due to subject 

aka patient’s body temperature and from the leakage signals 

generated from machine’s own trans-receiver circuits. Noise 

in pMRI produces random oscillations, which decreases the 

image contrast due to signal dependent data bias. This 

hampers the accurate qualitative and quantitative evaluation as 

well as feature detection of images. As the SNR of pMRI is 

mostly high in most of the clinical applications, added external 

noise is mostly established into Gaussian noise distribution 

[10]. 

    There are several key de-noising algorithms developed to 

tackle various types of MRI noises. These noise reduction 

methods can be categorized into linear and non-linear sects. In 
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linear algorithms, noise is minimized by updating pixel value 

from weighted average of neighborhood but reduces the 

quality of an image whereas in non-linear algorithms deal with 

edge detection and preservation but the fine resolution is 

degraded. Some of the popular linear filtering methods are 

Markov Random Field model [11], anti-isotropic diffusion 

filtering [12]-[13], wavelet based de-noising algorithms [14]-

[15]. Also, some non-linear methods are [16], bi-lateral and 

tri-lateral filtering [17] and spectral subtraction method [18] 

which can give up to 40% better SNR but with the expense of 

computation load. 

    In this work, a convex optimization method has been 

proposed with total variation penalties. The method is non-

linear so can provide better SNR results as well it has less 

computational burden. The method is tested with a noise 

contaminated phantom data and a simulated noisy brain data 

to show the efficiency of the proposed method. The standard 

deviations as well as the SNR for every reconstructed scenario 

is also calculated for proper demonstration. 

II. THEORY AND Methodology 

In this section, an algorithm to reduce external noise based 

on convex optimization based approach is proposed. In 

author’s previous work [4], it has been already shown that the 

proposed convex solution space based algorithm can reduce 

the reconstruction noise substantially. This work is also based 

on that proposed convex hull based solution approach with 

some added normalization penalty which works efficiently on 

external noise. 

As discussed above, external noise in MRI can be 

categorized into Rician, Gaussian and Rayleigh distribution, 

though after inspecting the MRI pixel value patterns it can be 

also assumed that around the center axis space the pixel 

magnitude distributions act like Gaussian pattern. In [5], it has 

been shown that adding total variation or TV penalties is a 

very effective approach to minimize Gaussian noise. In this 

work, the previous convex optimization based approach in 

[19] and [4] is modified with TV norm for better external 

noise performance. 

 pMRI reconstruction algorithms can be classified into two 

principle genres. One major methods tend to rely on the coil 

sensitivity data mainly. These methods approximate the coil 

sensitivity data through a reference scan or some kind of 

iterative optimizations, which afterwards is used to generate 

the final pMRI image. The foremost algorithm of this category 

is SENSE [6] and its major extensions like iterative SENSE, 

JSENSE [20] etc. Coil sensitivity estimation is a vital part of 

these methods otherwise the results can be spoiled by artifacts 

and noise. The other category of methods relies on auto-

calibration data and opts for a coil-by-coil image 

reconstruction step and then reconstruct the final image 

through some kind of coil data combination technique. 

Notable methods in this class are GRAPPA [21] and it’s 

extensions. In [4], the reconstruction method has been divided 

into two parts as it falls into the second principle category of 

pMRI reconstruction algorithms. 

    In this paper, the proposed method also follows the footstep 

of the convex hull based solution approach as in [4]. But there 

are few necessary modifications is done as this work mostly 

deals with the external noise interferences. The compressed 

sensing based approach in [22] assumes that pMRI images are 

sparse in a certain transform domain like Fourier domain or k-

space domain. Sparsity characteristics greatly enhances the 

possibility that added noise data is distributed across the whole 

image space whereas the true image data is distributed mostly 

around the center of the k-space. It is shown in [seu1] that the 

application of compressed sensing in dual-step optimization 

method [23] greatly promote the accuracy in reconstructed 

pMRI image as well as adding variational penalty like TV 

norm works effectively to reduce redundant reconstruction 

noise.  

     In this work, the proposed coil-by-coil reconstruction 

method in [23] is used in the first step of reconstruction. 

𝑚𝑖𝑛
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where, 𝑔 ∈ ℂ𝑀 , is the scanned undersampled k-space pMRI 

data in its vector form, ℂ represents the complex form. 

𝒛 ∈ ℂ𝐿𝑁2×1, reconstructed coil-by-coil image data in vector 

form. 𝐿 represents the number of coils used during the pMRI 

scanning. 𝑭ℂ𝑀×𝐿𝑁2
 represents the undersampled Fourier space 

domain. ‖𝑾𝒛‖1 is the L1 penalty on 𝒛 to promote the sparsity 

[22] and 𝑾 represents the wavelet transform domain. ‖ ‖𝐵𝑉 

represents Besov [24] norm which is actually the variational 

penalty. Interested readers can go through [22] and [22] more 

details on this method. 

Assuming that the final combined image from each coil is 

magnitude only as in methods like [21], a convex solution 

space based approached has been proposed in [4]. Let’s 

assume that 𝑧𝒎𝒍 ∈ ℂ𝑁2×1 is the matrix form derived from the 

solution in (1). Let 𝐼𝑚 ∈ ℝ+
𝑁×𝑁 be the magnitude of the final 

image to be reconstructed. Since the magnitudes of coil 

sensitivities are bounded due to bounded inductances of the 

coils, there exist constant entity 𝐵𝑙 ∈ ℝ+
𝑁×𝑁, such that 

|𝒛| ≼ 𝐵 for each coil 𝑙 = 1, 2, . . . , 𝐿. It follows that 

|𝑧𝒎𝒍| ≼ 𝐵𝑙 ⊙ 𝐼𝑚 , 𝑓𝑜𝑟 𝑙 = 1, 2, . . . , 𝐿 … … … … (2) 

     If 𝐼𝑚 and 𝑧𝒎𝒍 are reflected as the solution variables, the 

inequalities (2) form a convex hull containing the solutions of 

𝐼𝑚 and 𝑧𝒎𝒍 , with properly chosen constant bound vectors 𝐵𝑙 .  

     Choosing the boundary matrix can be delicate, but putting 

an element-wise positive penalty with initial approximation on 

estimated weights 𝑍 can lead to a suitable 𝐵. 
𝑚𝑖𝑛𝐵,𝜏‖𝐵 − 𝒛 − 𝜏‖2

2 ,   𝑠. 𝑡.   𝜏 ≽ 0 … … … … (3)  

Approximating 𝐵 for each coil in (3) converts problem (2) 

into no longer bi-linear. Assuming the final MR image 𝐼𝑚 to 

be sparse in certain transform domain as well as non-negative, 

following optimization scheme has been suggested 

𝑚𝑖𝑛
𝐼𝑚

0
‖𝐼𝑚‖1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐼𝑚 ≽ 0, |𝑧𝒎𝒍| ≼ 𝐵𝑙 ⊙ 𝐼𝑚               (4) 

The total Gaussian variational penalties or TGV norm used 

in [irgn] proved to be very effective in tackling Gaussian 

noise. The unconstraint Lagrangian form of the 𝐿1 regularized 

optimization problem (4) along with additional variational 
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penalty can be written as 

𝑚𝑖𝑛
𝐼𝑚

0 ,𝑞𝑙
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𝛾
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐼𝑚 ≽ 0, 𝑞𝑙 ≽ 0 … … … … (5)                                                  

Where, 𝑞𝑙 ∈  ℝ+
𝐿𝑁×𝑁  is a non-negative element-wise penalty 

to push |𝑧𝒎𝒍| always within the boundary of the convex 

solution space. The output quality of the proposed formulas 

mostly depends on the ‖ ‖𝑇𝐺𝑉 penalty. Perhaps, the 

advantage of this TGV norm is it promotes the normalization 

of Gaussian variation. As the nature of the significant portion 

of the external interferences are Gaussian, hopefully this 

formulation is going to benefit the noise reduction in pMRI 

images. In the upcoming sections, experimental setups and 

results using the combination of formulas proposed in (1) and 

(5) is going to be discussed. 

III. EXPERIMENTAL SETUP AND RESULTS 

Two different types of dataset have been applied to test the 

noise performance of the proposed method. In this experiment, 

the objective is to test a dataset which is contaminated by 

some degree of external white noise. Adding additional noise 

for test purpose exhibits one more issue to deal with. When an 

in-vivo data from a human subject is scanned, adding external 

noise can be harmful for the subject’s health, which is an 

unsure case. But for real time experiments, a phantom dataset 

is scanned which is going to be contaminated by external 

noise from white noise signal generator device. 

A. Data Acquisition 

The first dataset is a single slice brain data set of a healthy 

human volunteer subject; the dataset is also available in [25]. 

The dataset was scanned by a 3 Tesla SIEMENS Trio scanner 

with an eight-channel head array and an MPRAGE (3D Flash 

with IR prep.) sequence. The parameters of the scan were TR, 

TE = 2530, 3.45 milliseconds, TI = 1100 milliseconds, flip 

angle = 7
0
, image resolution is 256 by 256, thickness of object 

slice is 1.33 mm and FOV =FOV is 256 by 256 mm
2
. After 

acquisition of the dataset, white Gaussian noise is added. For 

this purpose, a noise matrix has been designed which has the 

same resolution as the scanned dataset of each coil. The noise 

matrix is denoted by 𝑛𝑙 ∈ ℂ𝑁×𝑁 , where 𝑙=1, 2, 3.., L 

represents the array coil sequence. The generated noise matrix 

is Gaussian in nature and after linearly adding to the full 

dataset the mean variance or standard deviation is 1.53%. The 

full set of attained k-space data are manually and uniformly 

undersampled at the nominal acceleration rate, denoted by 

𝑓
𝑛𝑜𝑚

, along with additional 36 extra auto-calibration signal 

(ACS) lines in the central k-space region along the phase 

encoding direction to form the undersampled k-space data 

pattern. Two sets of undersampled data at 𝑓
𝑛𝑜𝑚

 = 4 and 8 have 

been obtained. Taking into account the additional 36 ACS 

lines, the corresponding net undersampling rates, denoted by 

𝑓
𝑛𝑒𝑡

, of the datasets are 𝑓
𝑛𝑒𝑡

 = 2.56 and 3.76 respectively. It is 

also worth to be noted that the noise matrix 𝑛𝑙  was Fourier 

transformed to k-space data before linearly added to the fully 

sampled k-space data.  

Now for the second dataset as there is no health risk while 

scanning of a non-living object, external white noise generator 

device has been implemented during the scanning process. 

The second data of a phantom was acquired on a 3 Tesla 

SIEMENS scanner with a 4-channel head with true fast 

imaging with steady state precession sequence (TrueFISP). 

The parameters of the scan were TR by TE = 11 by 6.5 

milliseconds, image size of N×N = 256 × 256, flip angle = 

60
0
 and field of view or FOV = 162 × 162 mm

2
. White 

Gaussian noise generator device or WGN made by dB corp. 

[26] was used during the scanning process to simulate acoustic 

noisy environment. The acquired k-space data is in the 

Cartesian coordinate system and uniformly undersampled at 

the nominal rate of 𝑓
𝑛𝑜𝑚

 = 4, 8 and 12. The undersampled data 

together with the 32 extra ACS lines in the central k-space 

region along the phase encoding direction generating a 

undersampled k-space dataset with net undersampling rate 

𝑓
𝑛𝑒𝑡

= 2.67, 4 and 4.73. 

In addition to rectangular undersampling, both datasets have 

been undersampled using a radial pattern too. Radial pattern is 

used to give a good insight about the distribution 

characteristics of external noise pattern. Both the 

undersampling pattern is demonstrated in Fig. 1 and Fig. 2. 

 

 
Fig. 1. USACS or rectangular undersampling pattern with 𝒇_𝒏𝒆𝒕 

=2.56 (𝒇_𝒏𝒐𝒎 = 4) 
 

 
Fig. 2. Radial under sampling pattern  

B. Computational Setups 

The proposed computational algorithm for pMRI 

reconstructions has been simulated by MATLAB (Math-

Works, Natick, MA, USA). the normalized mean square error 

of the reconstructed image 𝐼𝑚 is defined as 

𝑒𝑁𝑀𝑆𝐸 =
‖𝐼𝑚 − 𝐼𝑆𝑂𝑆‖2

‖𝐼𝑆𝑂𝑆‖2
… …    … … … … (6) 

Where, 𝐼𝑆𝑂𝑆 is the reconstructed image from the fully 

sampled dataset. Sum-of-square or SOS operation has been 

performed to combine the coil images from multiple coils into 

a single final one [21]. 

    The process to estimate the signal-to-noise ratio or SNR of 

the reconstructed images is a tricky one as there is no standard 

system for it. There are some established estimation processes 
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of SNR for reconstruction noise performance such as in [27], 

but determining SNR in case of manually added external noise 

is still not well established. But hopefully, researchers depend 

on the figurative approach to observe the reconstruction 

performance in case of added external interferences. In this 

work, the quality of the proposed method is observed through 

two ways, first will be the dependable figurative approach 

through generated pMRI images. Other is the calculation of 

standard deviation [3] for each reconstruction, as standard 

deviation can give some insight about SNR and noise in an 

image. As the standard deviation increases, it is generally 

assumed that noise is getting worse or SNR is decreasing. 

C. Results and Analysis 

The contaminated in-vivo brain data with added Gaussian 

noise with a variance of 1.53% is shown in Fig. 3. 

 

 
Fig. 3. Fully acquired in-vivo brain dataset along with added white 

Gaussian noise 

 

    Fig. 3 depicts a scenario what a pMRI image can look in 

case of environmental acoustic and thermal noise. Though not 

100% accurate, it’s a simulated lookup into magnetic 

resonance image performance in case of external noise. Now, 

after implementing the proposed algorithms in equations (1) 

and (5), the reconstructed results are shown in Figs. 4-5. 

 

 
Fig. 4. Reconstructed in-vivo brain image for rectangular under 

sampling pattern with 𝑓
𝑛𝑜𝑚

 = 4 

 

 
Fig. 5. Reconstructed in-vivo brain image for rectangular under 

sampling pattern with 𝑓𝑛𝑜𝑚 = 8 

      It’s very clear from the comparison between images that in 

the reconstructed images of Fig. 4 and 5, the noise has been 

visibly improved. Though in Fig. 5 there are some visible 

artifacts but that is due to the higher acceleration rate 𝑓𝑛𝑜𝑚 = 

8. Although there are still some visible substances of noise 

left, but in real time scenario external noises don’t have high 

variances like 1.53%. the purpose of the simulation is to depict 

a clear figurative comparison that the proposed formula in this 

work has a contribution in reducing added noise. Readers also 

should note that modern pMRI scanning system still does not 

cross nominal acceleration rate that ‘4’. So it’s safe to say that 

the proposed technique can subsidize external noise as well as 

maintain quality of reconstruction. 

 

 
Fig. 6. Reconstructed in-vivo brain image for radial under sampling 

 

    Another interesting insight can be seen from Fig. 6. Where 

the fully sampled noisy was undersampled using radial 

pattern. The visible noise performance is better than that of 

Fig. 4. The reason is because radial pattern behaves somehow 

like Gaussian distribution, where center has larger values 

compare to outer regions where values become sparser. 

Radian undersampling greatly helps picking the external noise 

pattern in case if it is Gaussian in nature and TGV norm in 

equation (5) greatly improves the variational stabilization to 

reduce noise from image.  

   The NMSE values and standard deviation for different 

undersampling pattern and different acceleration rates is given 

in Table I and II. 

 
TABLE I 

NMSE VALUES OF IN-VIVO BRAIN DATASET FOR DIFFERENT 

UNDERSAMPLING 

UNDERSAMPLING TYPE NMSE 

RECTANGULAR (𝑓𝑛𝑜𝑚 = 4) 0.0039 

RECTANGULAR (𝑓𝑛𝑜𝑚 = 8) 0.0072 

RADIAL 0.0042 

*Lower is Better 

 

TABLE II 

STANDARD DEVIATIONS (%) OF RECONSTRUCTED IN-VIVO IMAGES FOR 

DIFFERENT UNDERSAMPLING 

UNDERSAMPLING TYPE STANDARD DEVIATION (%) 

RECTANGULAR (𝑓𝑛𝑜𝑚 = 4) 0.56 

RECTANGULAR (𝑓𝑛𝑜𝑚 = 8) 0.97 

RADIAL 0.36 

*Lower is Better 

 
For any image, standard deviation below ‘1%’ is acceptable 

for MRI images. From both the tables it is clear that the 

standard deviation of the reconstructed pMRI images are in 
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acceptable range. The proposed formulas have reduced the 

standard deviation from 1.53% to below 1% which is a 

significant contribution. 

 

 
Fig. 7. Fully sampled noisy phantom data 

 

    Though simulated noise scenario testing through in-vivo 

data gives a narrow idea about the noise performance, the 

results from the noisy phantom data where the external noise 

was added in hardware basis and real time expectation-wise, 

would give more detail insight about the noise efficiency. 

Now let’s have a look on the noisy phantom image acquired as 

described in section III.A, shown in Fig. 7. Now, after 

implementing the proposed formulas in equations (1) and (5), 

the reconstructed results are shown in Figs. 8-10. 
 

 
Fig. 8. Reconstructed phantom image for rectangular under 

sampling pattern with 𝑓
𝑛𝑜𝑚

 = 4 
 

 
Fig. 9. Reconstructed phantom image for rectangular under 

sampling pattern with 𝑓
𝑛𝑜𝑚

 = 8 
 

 
Fig. 10. Reconstructed phantom image for radial under sampling 

 

From the results in Fig. 8 to Fig. 10, it is observed that the 

reconstructed phantom images follow the same pattern as the 

in-vivo brain images with added simulated noise. In Fig. 8 and 

Fig. 9, the difference between the reconstructed images is very 

minimal except Fig. 8 exhibits a little bit higher resolution. 

The reason is due to sparse nature in the phantom dataset, that 

is why increasing the undersampling rate has minimal effect 

on the quality of the reconstruction. Both results in Fig. 8 and 

Fig. 9 improves the noise substantially compare to Fig. 7. In 

Fig. 10, where the dataset was undersampled using radial 

pattern, provides the best result so far. As it is already 

mentioned that radian undersampling pattern greatly co-

operates with the total Gaussian Variational penalties (TGV 

norm), which in turn has great impact on reducing external 

noise as well as retaining quality of the reconstructed images.  

The NMSE values and standard deviation for different 

undersampling pattern and different acceleration rates is given 

in Table III and IV. 
 

TABLE III 

NMSE VALUES OF PHANTOM DATASET FOR DIFFERENT 

UNDERSAMPLING 

UNDERSAMPLING TYPE NMSE 

RECTANGULAR (𝑓𝑛𝑜𝑚 = 4) 0.0026 

RECTANGULAR (𝑓𝑛𝑜𝑚 = 8) 0.0046 

RADIAL 0.0023 

*Lower is Better 

 

TABLE IV 

STANDARD DEVIATIONS (%) OF RECONSTRUCTED PHANTOM IMAGES 

FOR DIFFERENT UNDERSAMPLING 

UNDERSAMPLING TYPE STANDARD DEVIATION (%) 

RECTANGULAR (𝑓𝑛𝑜𝑚 = 4) 0.38 

RECTANGULAR (𝑓𝑛𝑜𝑚 = 8) 0.72 

RADIAL 0.31 

*Lower is Better 

 

    As the standard deviation rate of the acquired noisy 

phantom data was originally measured ‘1.29’, the 

improvements of the noise performance shown in Table IV are 

quite substantial. From the results shown above, it’s pretty 

evident that the formulas proposed in this paper can offer a 

noteworthy addition to reduce external noise from pMRI 

images. 

IV. CONCLUSIONS 

RF interferences in MRI reconstruction has been a crucial 

area for researchers to deal with, as noise reduction algorithms 

often deal with poor reconstruction quality. That is why 

balancing between noise suppression and reconstruction 

quality has been an utter challenge for algorithm developers. 

Most of the linear and non-linear filter based approaches 

discussed in section I have some kind of reconstruction quality 

penalty [11]. The proposed formulas in this work has tried to 

minimize the external noise along with maintaining quality in 

the reconstructed images. From the results shown above, it is 

clear that though the noise optimization scheme can affect the 

resolution, but still it can maintain acceptable level of 

reconstruction error. It has already been shown in [4] that 

NMSE value of less than ‘0.0050’ is considered as good 

quality of reconstruction for major pMRI methods. So, a 

decent standard for reconstruction quality as well as standard 

deviation less than acceptable range is an acknowledging 

factor that the proposed formulas are effective. Through 

comparison with other external noise reduction methods is 
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out-of-scope of this work, future study could be done on 

investigating the effectiveness of proposed method in 

comparison with other popular or state-of-art methods. The 

purpose of this work has been to formulate an algorithm to 

deal with external RF interferences, especially if the noise 

distribution factor embodies Gaussian Distribution. The 

efficiency and accuracy of the algorithm for the undersampled 

acquired k-space data have also been evaluated and shown in 

figurative as well as numerical depiction. Hopefully this work 

will give researchers a new approach of external noise 

reduction in pMRI and future study could be done to compare 

the method with other state-of-art algorithms and further 

improve it.  
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